Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 68(5): 1226-1236, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922739

RESUMO

As a substitute for methyl bromide, effects of allyl isothiocyanate (AITC) on nontarget microorganisms in soil are poorly understood. This study measured the half-life of AITC in the soil as well as its effects on the soil substrate-induced respiration (SIR) and on communities of soil bacteria and fungi. The results showed that AITC had a short half-life and a short-term inhibition of SIR; high-throughput sequencing analysis showed that AITC had less effect on bacterial than fungal communities. Fumigation reduced the diversity of soil bacteria temporarily, but stimulated the diversity of soil fungi in the long-term and significantly changed the structure of the fungal community. Following AITC fumigation there were significant increases in the relative abundance of probiotics such as Sphingomonas, Streptomyces, Hypocreales, Acremonium, Aspergillus, and Pseudallescheria that help to control plant diseases. Our study provided useful information for assessing the ecological safety of AITC.


Assuntos
Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Isotiocianatos/farmacologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Fumigação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Isotiocianatos/química , Solanum lycopersicum/crescimento & desenvolvimento , Solo/química
2.
J Environ Manage ; 236: 687-694, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772726

RESUMO

Dimethyl disulfide (DMDS) is an alternative fumigant to methyl bromide that was phased out globally due to its stratospheric ozone-depleting properties. Covering the surface of the soil with a plastic tarpaulin or 'barrier film' when using a soil fumigant is typically used to retain fumigants in the soil and to reduce emissions. Emission levels depend on the film's permeability, which varies mainly according to the film's material, the type of fumigant and the environmental conditions. We used specialized laboratory equipment to test the permeability of four films to DMDS under similar temperature and relative humidity (RH) conditions present in the field: polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC) and ethylene vinyl alcohol copolymer (EVOH). This report presents evidence that the influence of temperature and relative humidity on the permeability of four films to the fumigant DMDS: PE,PVC,PVDC, EVOH. This research confirmed that PE and PVC films are relatively permeable to DMDS and PVC was more unstable to a range of environmental condition than other three films; PVDC and EVOH films are relatively impermeable to the fumigant DMDS and the permeability of PVDC was more stable to a range of environmental conditions than EVOH. The cumulative emissions of DMDS from soil covered with PE, PVC, PVDC or EVOH were 21.38%, 27.51%, 1.59% and 1.52%, respectively. As the permeability of PVDC was more stable to a range of environmental conditions than EVOH, PVDC shows potential for use in the field with a volatile fumigant such as DMDS.


Assuntos
Fumigação , Poluentes do Solo , Dissulfetos , Umidade , Permeabilidade , Temperatura
3.
Sci Total Environ ; 650(Pt 1): 44-55, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30196225

RESUMO

The fumigant 1,3-dichloropropene (1,3-D) is widely-used to control pathogenic bacteria, fungi, nematodes and insects in soil before a crop is planted. Although fumigants in general have been reported to have a 'fertilizer effect' in the soil by increasing nitrogen availability, little is known of how a specific fumigant such as 1,3-D affects available nitrogen. This study used real-time quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing techniques to investigate the effects of 1,3-D on microorganisms involved in nitrogen cycling that were present in 2 soils: Jiangxi lateritic red soil and Beijing fluvo-aquic soil. The fumigant 1,3-D temporarily decreased the abundance of 11 functional genes involved in nitrogen-fixing, nitrification and denitrification in both soil types. Different nitrogen cycling groups recovered to the unfumigated level in various incubation phases. Microorganisms containing nifH, nxrB, napA and qnorB genes were most vulnerable to 1,3-D fumigation. However, a stronger and longer inhibition effect of 1,3-D on these 11 functional genes was observed in Jiangxi soil than in Beijing soil. At the same time, the abundance of nifH, AOBamoA, nirS, qnorB and cnorB genes was significantly increased 59 days after 1,3-D fumigation. Fumigation with 1,3-D significantly reduced the nitrogen-fixing bacteria Azospirillum and Paenibacillus; the nitrifiers Nitrosomonas and Nitrospira; and the denitrifiers Pseudomonas, Paracoccus and Sphingomonas. Conversely, fumigation with 1,3-D increased the nitrogen-fixing bacteria Bradyrhizobium and Rhizobium; the nitrification bacteria Nitrosospira and Nitrolancea; and the denitrification bacteria Sphingobium, Alcanivorax, Bacillus, Streptomyces and Aeromonas. Fumigation with 1,3-D therefore caused significant shifts in the species composition and number of microbes directly involved in nitrogen cycling in the short-term. These results contribute toward a better understanding of the impact of 1,3-D fumigation on various types of soil nitrogen-cycling groups.

4.
J Environ Qual ; 47(5): 1223-1231, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30272792

RESUMO

Dazomet (3,5-dimethyl-1,3,5-thiadiazinane-2-thione) is widely used as a soil fumigant for controlling soil-borne diseases and pests in China and other agricultural countries. The active ingredient of dazomet is its degradation product, methyl isothiocyanate. Little is known about the environmental conditions that affect the degradation of dazomet in soil. In this study, we conducted laboratory incubation experiments to test the effects of several environmental factors, including soil texture, water content, temperature, pH, and soil amendments, such as chicken manure or urea fertilizer, on the decomposition of dazomet. Results showed that dazomet degradation in soil is an abiotic process strongly dependent on soil texture, water content, temperature, and pH. Decomposition rates differed greatly in various soils, depending mainly on soil physicochemical properties such as pH and organic matter content. The degradation rate increased by 15 to 24 times and by 16 to 37 times when soil temperature increased from 5 to 45°C, and water content increased from 10 to 30%, respectively. Dazomet degraded faster in alkaline versus acidic soil. Both chicken manure and urea fertilizer moderately slowed dazomet degradation. Dazomet was degraded in soil mainly by hydrolysis. The results of our study contribute to a better understanding of the environmental behavior of dazomet, potentially leading to its more efficient, safe, profitable, and effective use by farmers.


Assuntos
Agricultura , Monitoramento Ambiental , Praguicidas/análise , Poluentes do Solo/análise , Tiadiazinas/análise , China , Fertilizantes/análise
5.
Ecotoxicol Environ Saf ; 163: 76-83, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30048876

RESUMO

An improved understanding of the conditions that influence dimethyl disulfide (DMDS) emissions, distribution through the soil and residues remaining after treatment will help to optimise the use of this relatively new soil fumigant for the control of soil-borne pests and disease, and to improve the safety of DMDS use. Using soil columns in the laboratory, the cumulative emission of DMDS using doses of 40 and 80 g m-2 were, respectively, 74.8% and 68.9% with bare soil, 4.2% and 9.6% with polyethylene (PE) film, 0.02% and 0.2% with Totally Impermeable Film (TIF). Six hours after injection DMDS was detected mostly 5 cm below the surface and very little at 25 cm when used on bare soil, compared with much higher and similar concentrations of DMDS 5 and 25 cm deep when films were used. DMDS at the injection port exceeded 1 µg cm-3 for longer when a film was used instead of bare soil. The total DMDS soil residues remaining in the soil, as a percentage of the initial DMDS dose at 40 or 80 g m-2 were, respectively, 1.17 and 5.58 with TIF, 0.91 and 1.18 with PE, 0.47 and 0.47 with bare soil. DMDS rose rapidly upwards and escaped from bare soil, whereas PE or TIF significantly reduced DMDS emissions, retained elevated DMDS concentrations in the soil for longer and distributed them more uniformly in the soil. TIF performed better in these respects than PE. TIF also reduced the potential environmental impact of DMDS more than PE, especially at the higher dose.


Assuntos
Dissulfetos/análise , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Fumigação , Solo/química , Volatilização
6.
PLoS One ; 13(6): e0188245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889848

RESUMO

BACKGROUND: Root-knot nematode (Meloidogyne spp., RKN) causes a disease that significantly reduces the yield of greenhouse cucumber crops year after year. Chemical control based on a single pesticide is now unreliable mainly due to pest resistance. Fumigant and non-fumigant pesticide combinations can potentially result in effective and economic RKN control. RESULTS: Combining the insecticide abamectin (ABM) with fumigants dazomet (DZ) or chloropicrin (CP) significantly extended the half-life of ABM by an average of about 1.68 and 1.56 times respectively in laboratory trials, and by an average of about 2.02 and 1.69 times respectively in greenhouse trials. Laboratory experiments indicated that all the low rate ABM combination treatments controlled RKN through a synergistic effect. ABM diffused into the nematode epidermis more rapidly when ABM was combined with DZ and CP, giving effective nematode control and an increase cucumber total yield, compared to the use of these products alone. ABM combined with CP or DZ produced significantly higher total cucumber yield than when these products were used alone. CONCLUSIONS: A low concentration of ABM combined with DZ in preference to CP would be an economic and practical way to control nematode and soilborne fungi in a greenhouse producing cucumbers.


Assuntos
Cucumis sativus/parasitologia , Hidrocarbonetos Clorados/metabolismo , Ivermectina/análogos & derivados , Nematoides/metabolismo , Solo/parasitologia , Tiadiazinas/metabolismo , Animais , Ivermectina/metabolismo
7.
Pest Manag Sci ; 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29527806

RESUMO

BACKGROUND: Root-knot nematodes (Meloidogyne spp.), soil-borne diseases and weeds seriously reduce the commercial yield of tomatoes grown under protected cultivation in China. Allyl isothiocyanate (AITC), a natural product obtained from damaged Brassica tissues, was evaluated as a potential replacement for the fumigant methyl bromide (MB) for use in the greenhouse production of tomatoes in China. RESULTS: The dose-response assay indicates that AITC has high biological activity against major bacterial and fungal pathogens (EC50 of 0.225-4.199 mg L-1 ). The bioassay results indicate that AITC has good efficacy against root-knot nematodes (LC50 of 18.046 mg kg-1 ), and moderate efficacy against fungal pathogens (LC50 of 27.999-29.497 mg kg-1 ) and weeds (LC50 of 17.300-47.660 mg kg-1 ). The potting test indicates that AITC significantly improved plant vigor. Field trials indicate that AITC showed good efficacy against Meloidogyne spp. and Fusarium spp. (both ∼ 80%) as well as Phytophthora spp. and Pythium spp. (both ∼ 70%), and improved plant vigor and marketable yield. CONCLUSION: AITC used as a soil fumigant (30-50 g m-2 ) effectively controlled major bacterial and fungal pathogens, root-knot nematode, weeds and increased plant vigor, yield and farmers' income in tomato cultivated under protected agriculture in China. © 2018 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...